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1

MODEL VALIDATIONS AND PREDICTIONS FOR WATER BARRIER DEFENSE

INTRODUCTION

The purpose of this report is to provide both validations and predictions for explosion plume
behavior. The experiments presented in this report were conducted in July, 1995, in a water-filled
quarry facility in Rustburg, Virginia, operated by Dynamic Testing, Incorporated, a subsidiary of NKF
Engineering, Incorporated. The data obtained from these tests are used to validate a computational
hydrodynamics model for plume predictions.

Background

This report was prepared in support of the Water Barrier Ship Self Defense Concept, managed by
C. E. Higdon of the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), Dahlgren,
Virginia, Code G23. Under the sponsorship of the Office of Naval Research (ONR), Arlington,
Virginia, the Center is developing technology that has the potential to be very effective in defending
Navy platforms against high-speed, low-flying antiship missiles (ASMs). The concept uses a Òwall of
waterÓ to provide a low-cost, universal terminal defense system for ships. The Òwall of waterÓ or
Òwater barrierÓ is formed from the shallow detonations of multiple underwater explosives to protect
the ship from attacking ASMs. This concept can be employed to slow or stop debris and warhead
fragments from missiles killed at very short range to preclude significant damage to the defending
ship. Furthermore, the barrier would defeat the fusing and structure of ASMs that have penetrated the
inner self-defense layer. Further details of this concept may be found in [1].

In a recent work [2], observations of a large set of experiments were used to improve a set of
empirical relations for modeling underwater explosion bubbles in an incompressible medium (water).
While such relations were derived and reported as long ago as 1948 by Cole [3] these approximations
were not valid for very shallow depths due to simplifying assumptions that were made. Using the
Rayleigh-Plesset equation for modeling a spherical adiabatic gas bubble oscillating in an infinite
incompressible medium, without any simplifying assumptions, together with new measurements of
shallow depth explosion bubbles, the new empirical relations provide more accurate initial conditions
for hydrodynamics computer codes.

Explosion Dynamics

Upon detonation of an underwater explosive a shock wave moving away from the charge is
emitted. This wave reflects off the surface as a rarefaction wave which travels back down through the
gas globe of detonation products. Due to the tension created behind the rarefaction wave, a whitened
area of cavitation is formed that rises from the surface. Under the surface a bubble is formed from the
combustion products, which expands rapidly due to the initially high pressures of its internal gases.
The early expansion of the bubble is nearly spherical, after which a water plume forms above the
bubble. Eventually, the bubble expands to its maximum volume. If this maximum volume has an
equivalent spherical radius that is between approximately one and two times the initial charge depth,
a second jet moving downward through the bubble will form during its collapse to a minimum volume.
The duration from the time of the detonation to the first collapse is referred to as the Òbubble
_______________
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period.Ó Since the jet strikes the bottom of the bubble before the minimum volume is attained, the
bubble forms an annular region. As the annular bubble re-expands, secondary plumes are ejected
radially, surrounding the central initial plume.

In the case of a line charge or several point charges placed sufficiently close together, a
cylindrical bubble is formed. The initial plume forms a wall of water above the line of charges.
Secondary plumes erupt on either side of the central plume after the first bubble collapse.

The shock related phenomena described above typically occurs on the order of a millisecond or
less. For the examples discussed in this report, bubble periods are approximately 0.6 s with secondary
plumes erupting shortly afterward. The entire duration, from the detonation to the plume falling
back down to the water surface, usually lasts between 4 and 6 seconds.

Model Approach

The computer codes used for the simulations and modeling presented in this report are based on a
generalized formulation of hydrodynamics [2,4-10]. This method is well suited for the study of
shallow-depth explosion plumes for the following reasons:

1. The ÒwaterÓ or ÒliquidÓ region is modeled as incompressible, thereby allowing for time steps
proportional to the inverse of the water velocity as opposed to the much smaller time steps that
a compressible formulation would require based on the speed of sound in water. This is important
because plume behavior occurs on the order of seconds.

2. The model allows for regions of Òspray,Ó which is typical of plume behavior in which a well
defined interface between the bubble and water or especially the water and the air does not exist.

3. The computational model uses a fixed ÒEulerianÓ grid providing for generality in studying
complex bubble dynamics and free surface topology changes. For shallow-depth explosions this
includes the underwater bubble forming one or more annular regions as a downward moving jet
intersects the bottom surface of the bubble as it collapses, in addition to the radial plumes ejected
on the bubbleÕs second expansion, and the eventual venting of the bubble into the atmosphere.

Our approach has some similarities to the volume of fluid (VOF) approach developed by Hirt and
Nichols [11] and, more recently, by Kothe and Mjolsness [12]. Our method differs in some
important ways from these typical VOF methods. First, the theory behind the model was designed
specifically for violent surface motions characterized by collisions of different portions of the free
surface. In particular, when collisions occur, the VOF variable will often attain a value larger than one
(due to numerical error or fluid elements running into each other). When this occurs, VOF
formulations simply truncate the overage. This process violates conservation of mass and can
introduce small instabilities by increasing the total energy of the solution. Using the generalized
formulation, density is redistributed in such a way that the total mass is conserved and the
momentum is redistributed so that the energy is nonincreasing (but may decrease when liquid
collisions occur). This method solves conservation of mass and momentum equations, which are
subject to density and pressure (when cavitation is an issue) constraints. The density constraint,
together with the conservation of mass equation, are equivalent to the usual divergence free
constraint for incompressible flow in regions where the density is at its maximum (liquid) value.
These equations are solved numerically using a split step procedure. First, the conservation equations
are approximated without regard to the constraints using a second order Godunov Method with
monotonized slope limiting, as described in [13]. Next, the density constraint is imposed through the
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solution of a variational inequality, which becomes a linear complimentarity problem upon
discretization. Finally, the pressure is determined using a projection method discretized using a finite
element method. This algorithm has been implemented for both a two-dimensional (2-D) (or axially
symmetric) code BUB2D [2,4-7,9], and a three-dimensional (3-D) code in generalized coordinates
BUB3D [8-10].

THE COMPUTATIONAL MODEL

Model Equations

The computational model used for both the 2- and 3-D codes is based on a generalized
formulation of hydrodynamics. This formulation uses a fixed spatial domain Ω , where the density ρ ,
velocity u, and the pressure p are governed by the mass and momentum conservation equations

      
ρ ρt + ∇ • ( ) =u 0 (1)

      
( )ρ ρ ρu uu kt g p+ ∇ • ( ) = − − ∇ (2)

subject to the constraint

  ρ ρ≤ 0, (3)

where   ρ0 is the constant density of the incompressible liquid. In (2) Ðk is the unit vector in the
direction of the gravitational force, and   g  is the gravitational constant. In regions where   ρ ρ= 0,
Eq.Ê(1) becomes the usual divergence free condition for incompressible flow. We define the time
varying ÒliquidÓ domain       D( )t  by

      
D x x( ) : ( , )t t= ={ }ρ ρ0 . (4)

The non-liquid domain is defined using

      Ω − = ∪ ∪D A B C( ) ( ) ( ) ( )t t t t , (5)

where the regions A, B, and C  are disjoint. Within these regions, the pressure is assumed to be
uniform; that is

      

p t

p t

p t t

p t

A

B

C

( , )

( )

( ) ( )

( )

x

x A

x B

x C

=
∈
∈
∈









. (6)

In the above,   pA  represents the constant ambient ÒairÓ pressure. The ÒbubbleÓ pressure,     p tB ( ), is
usually determined using an adiabatic gas assumption

    p t c V tB B( ) ( ( ))= γ ; (7)

where c is constant, γ is the (constant) ratio of specific heats of the bubble gases, and     V tB ( )  is the
bubble volume, which can be determined using
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V t

t
dxB

t

( )
( , )

( )

= −



∫ 1

0

ρ
ρ
x

B

. (8)

Finally,   pC  is the ÒcavitationÓ pressure, which is usually set to the vapor pressure of the liquid at
some specified temperature. When cavitation is to be modeled, an additional constraint is imposed on
the pressure, namely that       p t pC( , )x ≥  (see [8]). For the results presented here, this constraint was
not imposed, that is,   pC = −∞ .

Numerical Algorithm

Assume that the density and velocity,       ρ
n n,u  at time step n are known together with the pressure

gradient at the previous half step,     ∇
−pn 1 2/ . This solution is evolved from time     t t t tn n n= → + ≡ +τ 1

using the following three step time split procedure.

Convection

The solution is first advanced 
      

ρ ρn n, Ä, Äu u( ) → ( )  by ÒsolvingÓ the conservation laws (1-2) without

including the term   ∇p  on the right-hand side of Eq. (2) and without regard to the constraint Eq. (3).
This step is fully discretized using a formally second-order Godunov-type method, which uses slope
limiting in space and explicit predictor-corrector time stepping (e.g., [13]). Although the pressure
gradient is not explicitly added to the momentum here, it is used within the predictor step of the
Godunov method. Further details of this step may be found in Refs.Ê4 and 6 for axially symmetric
flow problems.

Redistribution of Density and Momenta

Next, the density and momenta are redistributed 
    
Ä, Ä ,ρ ρu u( ) → ( )  so that the constraint Eq. (3) is

satisfied, the global conservation of mass and momenta are maintained, and the energy is
nonincreasing. The density is redistributed using an approximate solution to the obstacle problem

    
∇ =

− >
=





2 0 0

0 0
H

H

H

ρ ρÄ if

if
, (9a)

and setting

    ρ ρ= + ∇Ä 2H . (9b)

These equations have been derived by considering a Boltzmann formulation for modeling inelastic
fluid collisions and are discussed in greater detail in Refs. 4, 6, and 9. These references also contain
details of the numerical discretization of Eq. (9) and the solution procedure, which employs a
constrained direction preconditioned conjugate gradient method. The momenta redistributions are
determined as solutions of two (or three for 3-D problems) elliptic self-adjoint problems

      
ρ ρu u u= + ∇ ( )Ä Ä 2 H . (10)

Discretizations of Eq. (10) yield systems of linear equations with diagonally dominant matrices,
which are efficiently solved using a diagonally preconditioned conjugate gradient method. The
importance of this step to the overall accuracy and stability of the algorithm was discussed in Ref.Ê7.
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As mentioned in the introduction, this redistribution step is a major distinguishing feature between
this algorithm and other VOF approaches (e.g., [11,12]) which would simply truncate the density
values.

Multiple Bubbles and Venting

After the redistribution,     ρ ρ= +n 1 , and the new nonliquid regions are then determined along with
the pressure in each of its connected subsets. In the computational space, the new liquid region,

      D Dn nt+ +=1 1( ), is defined to be the collection of grid cells   Cl  such that

    
ρ ε ρρl
n+ ≥ −( )1

01 , (11)

where     ρ l
n+1 is the density in cell   Cl . For shallow-depth explosion bubbles, the choice of ε ρ  is

important. In general, small values of ε ρ  will cause cells with only slightly less density than the liquid

to be treated as regions with uniform pressure, while larger values will cause more of the ÒsprayÓ
(where   0 0< <ρ ρ ) to be treated as a variable density incompressible region.

In addition to the distinction in the nonliquid regions designated by ÒairÓ A, ÒbubbleÓ B, and
ÒcavitationÓ C , each component (connected disjoint subset) of B is also accounted for. That is,
suppose

      
Bn

k

K

k
n

n

B=
=

∪
1

,

where   K n  is the number of distinct bubbles at time step n, and   Bk
n is the component corresponding t o

bubble k at time step n. When the bubble components   Bk
n remain distinct, their pressures   pk

n  behave
adiabatically

    p c Vk
n

k k
n= ( )γ ,

where   Vk
n  represents the volume of   Bk

n , and   ck  is constant for all steps n for which the component

has no interactions. If a bubble component splits into two distinct regions, say,     B B Bk
n

l
n

m
n→ ∪+ +1 1, the

new pressures     pl
n+1 and     pm

n+1 are computed assuming the volume changes occurred before the split;
that is,

    
p p

p V

V V
l
n

m
n k

n
k
n

l
n

m
n

+ +
+ +

= =
+

1 1

1 1

( )

( )

γ

γ  .

Similarly, if two distinct bubbles merge into a single component region, for example,     B B Bl
n

m
n

k
n∪ → +1,

the new pressure is given by

    
p

p V p V V V

V
k
n l

n
l
n

m
n
m
n

l
n

m
n

k
n

+
−

+
= + +1

1

1

( )( )

( )

γ

γ .

These formulas have been extended to the general case treating any finite number of bubbles
merging and splitting in [5]. Whenever merging occurs, the pressure of the new component changes
instantaneously. Similarly, when a bubble comes in contact with the air region (that is a cell in   Bk

n  is
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adjacent to a cell in A), the bubble is said to ÒventÓ into the air with the pressure instantaneously
changing to the air pressure. This is obviously a crude approximation to the finite amount of time
the venting would actually take or to the partial venting of the bubble. In particular, if the relatively
thin layer of water between the bubble and air is under-resolved by the computational grid, the
computed bubble may vent prematurely causing gross errors in the subsequently computed dynamics.
In order to prevent this premature venting, the value of ερ  in (11) is allowed to depend upon both
time and space by the prescription

      
ε ε ε

ερ = = ∈




l
n A l

n

B

C N A( )

otherwise
, (12)

where       N A( )n  is the set of cells that are either in or adjacent to the time varying domain     An .

Consider the case where 
    
ρ ε ρl
n

l
n≥ −( )−1 1

0  so that     Cl
n∈D  but, on the next step, the density

decreases below the liquid cutoff, that is, 
    
ρ ε ρl
n

l
n+ < −( )1

01 . If there is a cell in the neighborhood that

was nonliquid (
      
C Ck l

n n n∈ ∩ ∪ ∪( )N A B C( ) ) then cell   Cl  would be merged into the nonliquid

component containing that cell. If there are more than one nonliquid components in the
neighborhood, these components are merged together. However, the case when there are no
nonliquid neighboring cells is more problematic. Since the velocity filed in the liquid is divergence
free, the density can decrease only because of numerical error. Previously this case was treated by
resetting 

    
ρ ε ρl
n

l
n+ = −( )1

01  so that the cell remained a liquid cell. However, this obviously adds mass,

and violates the conservation law. Furthermore, this added mass can be large in the special case when

    ε εl
n

A
− =1 , but   ε εl

n
B= . Even without a decrease in density, the added mass in this case would be

    
ε ε ρA B lC−( ) 0 | |, where     | |Cl  is the volume of   Cl . In order to avoid these potentially large errors in

added mass, the density is no longer modified in this case. Instead, the cell remains part of the liquid
domain,       Cl

n∈ +D 1. Thus, the liquid domain is now defined as the collection of cells   Cl  such that

either Eq. (11) holds or       N D( )Cl
n⊂ . That is:

        
Dn

l
l l

nC+ += ≥ −( )1 1
01U : ρ ε ρρ  or       N D( )Cl

n⊂ . (13)

Pressure Projection

In the nonliquid region       u u= +n 1. However,   u  is not consistent with Eq. (2) in the new liquid
region. In this region the velocity is corrected,       u u→ +n 1, using the gradient of the new pressure,

    ∇
+pn 1 2/ . The pressure     p

n+1 2/ is the solution of

      
τ

ρ
∇ • ∇





= ∇ •

+

p
n 1

u in       Dn+1. (14)

The new velocity, given by

      
u un

n

n

p+
+

+
= − ∇1

1 2

1
τ

ρ

/

(15)
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is divergence free in       Dn+1 and, thus, is consistent with Eq.Ê(1). Equations (14) and (15) define a
projection un+1Ê=Ê      P( )u  onto the space of divergence free velocities. This equation is discretized using
a finite element method with bilinear (in 2-D) or trilinear (in 3-D) elements. This spatial
discretization produces an approximate projection which has been analyzed in Ref.Ê14. The resulting
linear system from the discretization of Eq.Ê(14) is solved using an incomplete Cholesky
preconditioned conjugate gradient method.

To determine the pressure uniquely using Eq.Ê(14), boundary conditions must be specified. On
those portions of the boundary of       Dn+1 that correspond to ÒwallÓ boundaries of Ω , a Neumann
condition is specified, namely

      

∂
∂

ρ
τ

p n

n
u n= •

+1

. (16)

Note that this condition, together with Eq. (15), implies that       u nn+ • =1 0  along wall boundaries. Since
the pressure is assumed to be continuous, Dirichlet conditions for the pressure along the nonliquid
regions are determined according to Eq. (6). In particular, we specify

      

p t

p

p

p

A
n n

B
n n n

C
n n

( , )x

x A D

x B D

x C D

=
∈ ∩
∈ ∩
∈ ∩









+ +

+ + +

+ +

∂ ∂
∂ ∂
∂ ∂

1 1

1 1 1

1 1

(17)

along those boundaries common to the nonliquid regions. Hydrostatic pressure Dirichlet conditions
are set on other portions of the boundary of Ω  to model ÒcutoffÓ boundaries.

Initial Conditions

For a single charge, the bubble is initialized as a spherical Òvoid,Ó with zero density, radius     A0,
and pressure     pB

0 , surrounded by a liquid region at rest. In the case of a line charge or a series of single
charges placed sufficiently close in a straight line, the bubble is initialized as a circular cylinder of
infinite length. The initial values for the bubble radius and pressure depend on the hydrostatic
pressure at the depth of the charge, the charge weight, and empirical constants which depend on the
charge type, derived from considering the equation of motion of a spherical bubble in an infinite
incompressible medium. In this case, the bubble remains spherical, and its radius oscillates periodically
between its minimum,   Amin , and maximum,   Amax , values.

Empirical Relations

The following empirical relations are valid for shallow-depth underwater explosions (see Ref. 2)

    A qWmin = 1 3/ (18)

  P d pA∞ = + (19)

    
G

q
J
P( )

( )
/

/α
α

α
α

γ

γ≡ −
−







=

−

−
∞

∞
1 1

1

3 1

3

1 3
1 3

(20)
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p PB

0
3

3 1
1

1

1
= − −

−







∞ −

( )
( )

γ α
α γ . (21)

In the equations listed above,   q  is the empirical minimum radius constant, which depends on the
charge type;   W  is the charge mass;   d  is the initial charge depth; and   pA  is the ambient air pressure.
If   d  is measured in units of feet and   pA  in feet of water, then   P∞  is the hydrostatic pressure at the
charge depth in units of feet of water. In Eq. (20), γ  is the ratio of specific heats for the bubble

gases, and   J∞  is the empirical maximum radius constant. In the above equations, the value for α
must be determined as the solution to Eq. (20) with a given value for the right-hand side. This can be
done approximately using NewtonÕs method. The value α  is also the ratio of maximum to minimum
bubble radii,

  
α = A

A
max

min

, (22)

so that

    

A J
W

P
J
W

P
max = −

−







≡∞

−

−
∞ ∞

1

1

3 1

3

1 3
1 3

1 3

1 3

1 3

α
α

γ

γ α

( )
/

/

/

/

/
. (23)

In cases when the depth ranges between 100 and 1000 ft, it was noted in Ref. 3 that values for   Jα

remain nearly constant. Because of this and the interest in the relatively deeper charge depths,
subsequent reports (e.g., [15,16]) used Eq. (23) under this assumption. However,   Jα  depends on α ,
which can change significantly, particularly at shallow depths. This dependence was studied in detail
in Ref.Ê2.

For line charges approximated as a circular cylinder of infinite extent, the corresponding
formulas were derived in Ref.Ê2.

    A q MD D
min
( ) ( ) /2 2 1 2= (24)

    
q qD( ) /2 3 22

3
= (25)

    α α( ) /2 3 2D = (26)

    
J JD

∞ ∞=( ) /2 3 22

3
(27)

    

A J
M

P

D D
D

Dmax
( ) ( )

( ) ( )

( )

/
/

/

( )

( )
2 2

2 2 1

2 2

1 2
1 2

1 2

1

1
= −

−







∞

−

−
∞

α
α

γ

γ
. (28)

In Eqs. (24) and (28), M is the mass per unit length.

For the tests considered in this study, all charges were Composition C-4. Based on our previous
analysis (Ref. 2, Table 3-7), the values used in this study are   γ = 1 34. ,     q = 0 286. , and     J∞ = 15 3. .
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Shock Effects

It was noted by Kedrinskii in Ref.Ê17 that using an incompressible liquid model for shallow-depth
explosion simulations generally underpredicts the plume heights for early times. It has been
demonstrated in Refs. 2 and 17, that an indentation of the free surface directly above the charge will
increase the plume heights predicted by an incompressible liquid model. This indentation represents
the effects of spalling from the reflection of the detonation shock wave from the surface. In addition
to this reflection, shock interaction from the simultaneous detonation of multiple charges has been
shown to cause plume fingering between the initial charge locations. An empirical model for this
phenomenon is shown in Fig. 1.

d

d

RI

RF

RF

Air

Water

Initial Charge Locations

Reflected Charge Locations

Fig. 1 Ñ Empirical model for shock effects

NUMERICAL RESULTS AND VALIDATIONS

In this chapter, validations of the 2-D computational model are first presented. Comparisons of
the computations to experimental data include plume height measurements from video cameras
images and plume density measurements from both conductivity probes and microwave absorption.
The computational model is then used to determine an Òoptimal depth studyÓ in which a measure of
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the plume density as a function of charge depth is maximized. Finally, the empirical shock model
displayed in Fig. 1 is validated using the BUB3D code.

The tests described here were conducted in a 130-foot-deep water-filled quarry operated by
Dynamic Testing, Incorporated (DTI) in Rustburg, Virginia, during July 1995. The charges used in
the experiments were configured in a line comprised of five to eight discrete 10-lb blocks of C-4
separated by 8 ft or as a continuous line charge of length 40 ft to 56 ft. A more detailed description
of these tests has appeared in Ref.Ê18. The subset of tests considered here are summarized in TableÊ1.
In this table, N is the number of discrete charges in the configurations, S is the distance between the
center of the charges,     A

D
max
( )2  is the maximum theoretical radius of the cylindrical bubble as determined

using Eq. (28), and C is the scaled depth,     C d A D= / ( )
max

2 . The parentheses surrounding the number of
charges of the continuous type indicate that these were actually comprised of individual 1-lb blocks
of C-4 in a line.

Table 1 Ñ Test Shot Descriptions

Shot
No.

Type d (ft) N S (ft) M
(lb/ft)

    A
D

max
( )2

(ft)

C

2 Discrete 8.2 5 8 1.25 11.53 0.71
6 Discrete 8.2 8 8 1.25 11.53 0.71
7 Continuous 8.2 (56) (1) 1.25 11.53 0.71
9 Discrete 8.2 5 8 1.25 11.53 0.71

10 Discrete 9.4 5 8 1.25 11.36 0.83
11 Continuous 9.4 (40) (1) 1.25 11.36 0.83

Validations of the Two-Dimensional Model

The two-dimensional (2-D) model uses an initial approximation of the bubble as a circular
cylinder of infinite extent. This approximation is reasonable for the discrete tests only if the
distance between charges is relatively small when compared to the maximum diameter of the
spherical bubble from an individual charge. For the discrete tests listed in Table 1, the individual 10-
pound charges of C-4 would generate bubbles with maximum radii     Amax = 9 3. , when     d = 8 2. , and

    Amax = 9 2.  at     d = 9 4. . Since these values are greater than the charge standoff of 8 ft, it can be
expected that the bubble dynamics will be adequately represented by the 2-D approximation.
However, it can be expected that shot numbers 7 and 11 will be better represented by this
approximation.

The grids used in this study are tensor product grids. That is, the grid point locations may be
defined as a tensor product of two one-dimensional (1-D) grids. Typically, the grids are constructed
with uniform spacing in both directions in the vicinity of the bubble, with grid stretching t o
approximate either conditions at infinity or a wall boundary relatively far away. The x-direction is
taken to be the horizontal line perpendicular to the line charge (cylindrical axis). For single line
charges,     x = 0 is a symmetry plane. The z coordinate measures vertical displacement with the
convention that     z = 0  corresponds to the initial location of the water-air interface.

Cylindrical explosion bubbles are more difficult to resolve numerically than axially symmetric
bubbles due to the greater values of the radius ratio     α ( )2D . For the test shots in Table 1, the initial
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(minimum) bubble radius (determined using Eq. (24)) is     A
D

min
( ) .2 0 197=  so that     α ( )2 57D > . Thus, the use

of a single uniform grid capable of resolving the initial bubble and extending beyond the bubble at its
maximum size would contain a prohibitively large number of cells. One method of alleviating this
problem is through the use of two separate grids.

The 2-D solutions were computed in two steps. Initially, a grid that was fine in a region
surrounding the charge line was used until the bubble approached the boundary of the fine region.
Then the solution was remapped, conserving mass and momentum onto a grid that was coarser than
the fine grid region of the first grid but still able to resolve the bubble after the initial grid had been
used. This second grid was uniform in a large enough region to contain the important long-time
dynamics of the problem. For example, the initial grid used in these computations consisted of
40Ê×Ê100 square cells of size     h1 0 05= .  in the region     0 2≤ ≤x  intersected with     − − ≤ ≤ − +d z d2 5 2 5. . .
Outside of the uniform region, cells were stretched horizontally to     x X r= = 110  and downward t o

    z Zb= = −115 using 40 additional grid lines in each direction. Above the uniform region, the spacing
in the z direction was uniformly set to     ∆z = 0 1.  in the region     − + ≤ ≤d z2 5 2. . The initial grid was
used for     0 0 007≤ ≤ =t ti . , while the cylindrical bubble grew from its initial radius of 0.197 t o
approximately 1.6. The computed solution at   t ti=  was then remapped onto the second grid.

The numerical errors were approximated by using two different grids for the second step of the
computations. Each grid contained square cells of size     h2 in the region     0 12≤ ≤x  intersected with
    − − ≤ ≤d z11 28. As with the initial grid domain, the second grids were stretched horizontally t o

    x X r= = 110  and downward to     z Zb= = −115. To simulate the tests where the initial charge was at
depth     d = 8 2. , the grids were stretched upward to     z Zt= = 180  and, in the case when     d = 9 4. , they
were stretched to     z Zt= = 125. The ÒfineÓ grids contained a uniform region with     h2 0 2= .  and used a
total of 100Ê×Ê305 cells, and the ÒcoarseÓ grids contained a uniform region with     h2 0 4= .  and used a
total of 50Ê×Ê160 cells.

The effect of using an indented channel in the surface above the line of charges was also tested.
This was done by performing the computations using both an initially ÒflatÓ and ÒindentedÓ free
surface. The indentations are determined using the model shown in Fig. 1 with     R dI = 1 03. , which is
the same value used in Ref. 2 for axially symmetric computations with a single charge.

A summary of the runs with computed bubble periods,   Th  (the computed time that the bubble
attains its minimum radius) and maximum radii,     A

D
max,h
( )2 , is listed in Table 2. Here, the radius refers t o

the equivalent radius of a cylinder with the same cross-sectional area since the bubbles will in general
not remain circular. The number of time steps taken to the first bubble minimum, N(Th), and the
total number of steps, N(TF), to reach the final time     TF = 6 0. , are also listed. The time steps for the
runs were adaptively selected, based on changes in equivalent radius. The number of steps taken until
the first bubble minimum is determined by an input tolerance, which was halved for the fine grid runs.
The execution times in Table 2 are in minutes on a Silicon Graphics Impact 2 workstation with an
R10000 processor, compiled using f77 -O3 -mips4 -n32 -r10000. The times listed are for the
completion of the second step of the run only. The execution time for the initial grid was
approximately 15 min.
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Table 2 Ñ Run Summary

Run d Surface Second Grid     A
D

max,h
( )2

  Th N(Th) N(TF) Execution
time

7-C 8.2 flat coarse 10.824 0.5921 466 1912 28.1
7-CI 8.2 indented coarse 10.761 0.5898 448 1978 29.5
7-F 8.2 flat fine 10.903 0.5862 860 3574 409.1
7-FI 8.2 indented fine 10.820 0.5859 874 3605 407.1
11-C 9.4 flat coarse 10.787 0.6087 463 1927 28.4
11-CI 9.4 indented coarse 10.753 0.6069 465 1955 28.7
11-F 9.4 flat fine 10.880 0.6034 876 3826 402.4
11-FI 9.4 indented fine 10.840 0.6019 884 3761 415.8

The values of     A
D

max,h
( )2  listed in Table 2 indicate that the depth has little influence on the maximum

radius. However, the fine grid values are approximately 1% greater than the coarse grid values. Since
the grid sizes and time steps were approximately halved in the fine grid and first order convergence
has been observed for the maximum radius (and period) using this numerical method, the difference in
the two solutions provides an estimate of the numerical error. The computed periods at the shallower
depth are consistently shorter than at the greater depth. This is consistent with the theoretical and
experimental observations reported in Ref.Ê2 due to the proximity of the free surface. As with the
maximum radius values, the periods computed using the fine grids are approximately 1% greater than
on the corresponding coarse grid

Plume Observations

Density contours of the plumes at tÊ=Ê0.2, 0.5, 1.0, and 2.5 for the computational Runs 7-C, 7-F,
7-CI, and 7-FI are displayed in Fig. 2. These images are based on a shading corresponding to the
logarithm of the density. This enables the relatively low density of the spray in the plume to be
easily observed. Densities less than 0.1% of the water density are represented as a ÒwhiteÓ region, and
ÒblackÓ corresponds to the water density.

At time tÊ=Ê0.2, the Òegg-shapedÓ bubble has nearly attained its maximum radius. The bubble
profiles for the four cases at this time are nearly indistinguishable, except for the slightly irregular
profile of the bubble in Run 7-C. A small region of Ònumerical sprayÓ has begun to form above the
water on top of the bubble. This corresponds to the ÒRayleigh-TaylorÓ instability at the water-air
surface, where the water has an upward velocity but is being accelerated downward due to the below
ambient pressure inside the bubble. Further discussions of instabilities due to explosion bubble
dynamics are included in Refs.Ê4 and 9. A small thin upward moving water jet has formed in the cases
when the initial surface was indented. This phenomenon has been described in Ref.Ê17 and examined
further in Ref.Ê2.

At time tÊ=Ê0.5, the bubble has begun to collapse. During this collapse a high-pressure stagnation
point forms in the water above the bubble. This in turn causes the formation of a Òdouble jetÓ; a
small one moving downward through the bubble, and a larger one forming the central water column of
the plume. Similar jetting behavior has been observed for axially symmetric bubbles by Blake and
Gibson in Ref.Ê19. In the computations, this central column is surrounded by the numerical spray
region, which is moving upward but is being accelerated downward by gravity. The thin jet caused by
the indentation rises approximately 10 ft above the numerical spray. Once again, there is little
difference between the bubble and plume profiles for the coarse and fine grid run comparisons.
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Fig. 2 Ñ Computational runs for Shot 7

As indicated in Table 2, the bubble period for all four runs was approximately 0.59 s. As the
bubble re-expands, secondary plumes are ejected upward and outward on the sides of the central
plume. At time tÊ=Ê1.0, the bubble has begun its second contraction, and the secondary plumes have
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reached a height of over 25 ft, and a total width of over 40 ft. At this time, differences in the details
inside the plume structure become more evident at the different grid resolutions. On the fine grid
runs, the plume structures are almost identical, except for the thin central plume, which remains
higher in the indented surface case. The top of the secondary plume from Run 7-C is slightly wider
and lower than with Run 7-CI. Differences in the solutions as time progresses are expected due to the
water-air instabilities mentioned above and the instabilities at the bubble interface near bubble
minimums. However, the overall qualitative behavior of the plume and bubble appears to be
reproducible.

Plume differences are more apparent at tÊ=Ê2.5. At this time, the plumes have begun falling
downward with gravity, and the bubble has little remaining energy. Bubble energy is reduced in our
computational model through both numerical dissipation and through our redistribution step and
treatment of liquid-on-liquid collisions. For further discussions on energy losses, see Refs. 4, 6, 7,
andÊ9. The widths and heights of the secondary plumes for the coarse grid runs have continued t o
diverge. In the indented runs, the plume structure is similar between the two grids, with the coarse grid
secondary plume extending higher (probably due to the use of the stretched grid cells). Some detail in
the plume structure at a height of about 30 ft appears in the fine grid Run 7-FI due to one of the
bubble pulsations. During the computations, the bubble typically underwent ten pulsations before
venting at about tÊ=Ê4.5. This plume detail can also be seen at a height of about 20 ft in Run 7-F and
just above the surface for the coarse grid runs. Comparing the four runs demonstrates that the major
difference between using the flat or indented surface is the height of the thin central plume, and even
though some detail is lost with the coarse grids, their solutions agree qualitatively with the finer grid
runs, particularly at the early times.

Figure 3 displays graphs of the computed plume heights as a function of time for DTI ShotÊ7.
Here, the plume height was defined as the highest location of a grid cell having a density greater than
1% of the water density. When the free surface has an initial indentation the primary central plume
always remains higher than the secondary plumes, as indicated by the smooth nearly parabolic
profiles from Runs 7-CI and 7-FI. In this case the difference between the fine and coarse grids is
relatively small. For the first second the relative error is less than 3%. The error increases to about
6% at tÊ=Ê2 s, and the error in the maximum computed plume height is under 8%. The inflection
point in the plume height for Run 7-F shortly after tÊ=Ê1.1 was caused by the secondary plume rising
above the central plume. In Fig. 2 the details of this secondary plume, and of subsequently ejected
plumes are not reproduced on the coarse grid Run 7-C. The discontinuity in the plume height at
tÊ=Ê3.5Ês for RunÊ7-F occurs as the density of the falling plume decreases below 1% of the water
density. This happens because the plume has a horizontal velocity and becomes under-resolved
(diffused) as it passes through the stretched cells in the grid.

Figure 4 displays the computed plume heights for Shot 11. The plume heights are roughly 25%
lower than the computed results for Shot 7. As before the agreement between the coarse and fine grid
results with the initially indented free surface (Runs 11-CI and 11-FI) is very good, except for tÊ>Ê3,
when part of the coarse grid secondary plume extends above the primary plume.

Measurements of the plume heights using video frames were documented in Ref.Ê18. The
measured heights for Shot 7 are compared to the results from the fine grid computations in Fig. 5.
After tÊ=Ê1.2 s, plume height measurements were not possible due to a combination of the poor
definition of the top of the plume and low contrast. While the computations using a flat initial
surface under predict the measurements by over 30%, the use of the initial indentation produces
relative errors under 10%. At early times the higher values for the measured heights are conjectured
to be caused by the initial shock spalling water from the surface. Recall, we are not modeling the
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shock directly, but only empirically using the indentation above the surface. At later times, the
computed heights for Run 11-FI overtake the measurements. This is very likely due to drag on the
top of the plume in the air; another phenomenon that is not included in our model.
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Fig. 4 Ñ Computed plume heights for Shot 11

The results for the deeper case, ShotÊ11, are shown in Fig.Ê6. As before, the computation with
the flat initial surface, RunÊ11-F, under predicts the measured values at all times, while RunÊ11-FI
predicts heights below the measurements at early times and exceeding the measurements at later
times.

We remark that the measured values used in Fig. 6 were not taken from Ref.Ê18. While our
estimates from the video data agreed with their results for all other shot cases, our estimates for
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ShotÊ11 were 25 to 30% higher. Since the digital images used in that report were not saved and hard
copies of the video sequences were not printed, it was not possible to reproduce the measurements
presented in Ref.Ê18. However, we attempt to justify our measurements by comparing pictures from
the video sequence and computations for each shot.
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Fig. 5 Ñ Computed and measured plume heights for Shot 7
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Fig. 6 Ñ Computed and measured plume heights for Shot 11

Figure 7 shows a sequence of side-by-side comparisons of video frames from the experiment and
computed density contours from Run 7-FI of the plume evolution for Shot 7. At early times, tÊ<Ê0.8,
the computations under predict the observed plume heights. This may be due to the water spalled
upward due to the initial shock reflection. The outline of the numerical spray region appears t o
provide a rough approximation to the outline of the actual plume. The emergence of the secondary
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plumes through the spray outline coincides at tÊ=Ê0.8 in both the computation and the experiment.
At later times, the secondary plume has a greater horizontal velocity and lower vertical velocity in
the experiment than the computation indicates. Still, the overall qualitative agreement between the
computation and experiment is remarkable, considering the complexity and duration of the
phenomenon. The total duration of the plume above the water surface is slightly under predicted by
the computations as indicated at tÊ=Ê5.0. This can be expected due to the drag on the fine water
droplets comprising the spray in the plume at the late times.

Figure 8 shows a sequence of side-by-side comparisons of the plume evolution for Shot 11. In this
case the early time plume profiles are in better agreement for tÊ<Ê0.8 than with Shot 7. Here, the
numerical spray region more closely matches the opaque spray surrounding the plume. The secondary
plume, which can be seen in the numerical spray region at tÊ=Ê0.8, has not yet emerged from the
spray outline, as it appears in the video frame. Also, as with Shot 7, the computed secondary plume
rises higher than in the experiment. Since this secondary plume appears to be comprised primarily of
spray, drag may be effecting its motion substantially. The overall duration of the plume above the
surface is reproduced well by the computation, as indicated at tÊ=Ê4.4.

Note the difference in scale of the video frames from the two shots as shown in Fig. 7 and Fig. 8.
The grid marks in each case were based on matching measured plume heights at corresponding times
from video frames taken at a 90o angle to the line charge. These latter frames had fiducials so that
precise scale measurements could be made (see Ref. 18). As an additional check of the scale used in
Figs. 7 and 8 observe the profile of the trees in the background. The field of view (FOV) for Shot 11
(Fig. 8) is obviously narrower than for Shot 7 (see Fig. 7). The grid scales used in these figures closely
match the difference in the FOV. When this difference in the FOV is taken into account, the plume
heights for Shot 11 agree with those presented in Fig. 6 but, as previously mentioned, are 25 to 30%
higher than reported in Ref. 18.

Microwave Data

Measurements of the plume density using microwave measurements were first discussed in
Ref.Ê20. These measurements were based on the amount of microwave absorption through the plume.
Microwaves were sent and received using a pair of 3-ft radius parabolic dishes placed on either side of
the plume at equal heights above the water surface. To compare the microwave measurement with
the computed densities, the computed values were integrated within a cylindrical region of radius 3 ft,
corresponding to the region between the parabolic dishes. At time   tn, this integral, representing the
total amount of water between the dishes, can be expressed as

    
I t H R L I H R L dz dy x y z dxn n

H R

H R

r z

r z n

L

L
( , , , ) ( , , ) ( , , )

( )

( )
≡ =

−

+

− −∫ ∫ ∫ ρ (29)

where     R = 3 is the radius of the dishes,   H  is the height of the center of the dishes, 2L is the distance
between the dishes, and

    
r z R z H z H R( ) ( )= − − − ≤
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In both the experiment and the computations the value for L was sufficiently large to contain the
entire width of the plume. For 2-D approximations,   ρ

n  does not change in the y direction (parallel
to the line of charges and perpendicular to the line between the microwave dishes). Therefore, using
symmetry across     x = 0, it follows that

    
I H R L r z x y z dxdzn

H R

H R
n

L

( , , ) ( ) ( , , )=
−

+

∫ ∫4
0

ρ . (31)

This integral is approximated numerically using the quadrature formula
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This mass is converted into an equivalent water length (EWL) by

    
W t H R L W H R L
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n
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ρ π0

2
, (33)

corresponding to the length of water filling the cylinder having an equivalent mass as the plume
intersected with the cylinder. The cylinder is horizontal with its axis at height H, with radius R, and
length 2L. (For the microwave data the length of the cylinder or distance between the dishes is not
significant since this distance is much greater than the width of the plume. That is, W will not change
if L is sufficiently large.)

Figure 9 shows the computed and measured microwave data for Shot 7. The measured values for
this shot became saturated at a peak value of 1.56 as indicated by the flat plateau in its graph. The
graph of the measured data begins rising approximately 0.15 s earlier than the computed results that
corresponds to the plume height data presented in Fig. 5. Since the plume heights from the runs with
the indented surface were in better agreement with the measurements, only data from those runs are
presented here. At early times (tÊ<Ê0.8), only the central plume passes through the microwave
cylinder. Both computations appear to severely under predict the amount of water in the central
plume at this height. Consider the structure of the computed plume at tÊ=Ê0.5 in Fig. 2. The density
contours indicate a thick wall of water rising to a height of about 20 ft. Above this thick region is a
much thinner plume resulting from the initial indentation. According to the computations, the thick
part of the plume begins to thin out before it reaches a height of 25 ft. Therefore, reducing H
generally increases W. For example, Run 7-FI yielded W(0.5,12.5,3.0,L)Ê=Ê3.3, compared t o
W(0.5,25,3.0,L)Ê<Ê0.5, as indicated in Fig. 9. The peak in the computed values at approximately
    t = 1 0.  occur as the secondary plumes pass through the microwave height. This peak is followed by a
smaller peak as the water at the top of the secondary plume falls back downward. Since the secondary
plume was not ejected upward as high in the coarse grid run, the smaller peak appears substantially
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earlier (    t = 1 3. ) for Run 7-CI than the time (tÊ=Ê2.1) it appears for Run 7-FI. At later times (tÊ>Ê3),
the fine grid run and the measured data are in better agreement.
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Fig. 9 Ñ Computed and measured microwave data for Shot 7

Figure 10 displays the microwave results for Shot 11. Here the initial rise in the graphs for tÊ<Ê0.5
are all in agreement. However, while the measured data rises and then falls (consistent with the peak
computed plume heights shown in Fig. 4), the computed data for Run 11-FI peaks at tÊ=Ê1.0 as the
secondary plume rises above 25 ft (cf., Fig. 8). While the computed equivalent water length values
range between 1.1 and 1.7 for 1Ê<ÊtÊ<Ê2.1, the measured data range between 2.0 and 3.2 during the
same time period.
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Fig. 10 Ñ Computed and measured microwave data for Shot 11

Probe Data

In addition to the microwave data, plume densities were measured using conductivity probes.
These probes were developed by Phillips and Scott [21] and consist of two parallel stainless steel rods
whose conductivity is linearly proportional to its unwetted length. For these tests, fifteen probes
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were suspended on a cable perpendicular to the line of charges at a nominal height of 12.5 ft. The use
this technology for plume density measurements was conceived of and previously used by Lipton in
Ref.Ê22. However, the measured height above the charges was only 11.5 ft as described in Ref.Ê23.
The probes were spaced 1 foot apart with a central probe directly above the line of charges.

Making comparisons of density measurements at the individual locations is not meaningful due to
the instabilities inherent in the plume formation. Indeed, there is very little agreement between probe
pairs equally distant on either side of the charges. However, some success was achieved by making
comparisons using an integral norm. As with the microwave comparisons, we define the effective
water length W using (29) and (33), taking the limit as     R→ 0. This yields
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where H is the height of the probe line, yp the horizontal offset from the central charge (or center of
the line charge), and 2L is the distance between the first and last probe in the line. Since the probes
are located at discrete points, this quantity is approximated using the trapezoid rule quadrature
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where S is the uniform spacing between the N probes and   ρ i  is the density at the ith probe location.
The use of (36) with SÊ=Ê1 and NÊ=Ê15, corresponding to the actual probe locations, is referred to as
Òpoint line integrationÓ (PLI). Later, we will also consider an approximation to Eq. (34) based on
values for the densities inside each computational cell, with values for L greater than the plume
widths. This will be referred to as Òfull line integrationÓ (FLI).

The computational data was integrated at HÊ=Ê12.5, as opposed to the 11.5 ft height of the cable.
However, the cable was moved by the plume during the experiment so precisely that matching the
height of the probe cable was not feasible. Figure 11 shows a comparison of the equivalent water
lengths WS, using Eq. (35) on the probe data and the computational data. While the peak values of WS

agree to within 15%, the peak of the computed values occurs at approximately tÊ=Ê0.5 s, while the
measured peak occurs at approximately tÊ=Ê1.2 s. Compared to the microwave data, both the
computed and measured probe data indicate much lower W values for tÊ>Ê2. This is because after this
time most of the plume has spread out beyond the 15 ft width straddled by the probes. Furthermore,
the probes open downward and are not able to detect water falling downward due to a ÒshadowingÓ
effect.

Figure 12 displays the comparison for Shot 11. Here, the computations are substantially higher
than the measurements at almost all times. As the water in the plume is broken up into droplets and
spray, the behavior of the probes is not well-known. In general droplets smaller than the width of the
fork in the probes will not be detected. This may partially explain the large discrepancy in the data.

The integrity of all the data can be checked by comparing results from each measurement for
one of the shots. Fig. 13 shows a comparison of the data for Shot 7 for tÊ<Ê1. For tÊ<Ê0.8, the plume
is comprised of only the central water column, surrounded by spray from the initial shock reflection
and Rayleigh-Taylor instability at the free surface. Therefore, it can be expected that the density
probes span most of the water in the plume at these times. However, as seen in Fig. 13, the
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integrated measured probe data is not only far below the computed data (Run 7-FI (PLI) and (FLI)),
but it is also well below the measured microwave data recorded at over twice the height of the probe
line. That the probes are spaced sufficiently close to resolve the plume structure and their 14-ft span
is sufficiently wide during these times is supported by the similarity of the computational data using
either point line integration at only the probe locations (PLI) or full line (FLI) integration at all cell
locations. These two integration formulas begin to diverge after tÊ=Ê0.8 as the wider secondary plume
reaches the probe height. Another disturbing feature in Fig. 13 is that the microwave data, measured
at 25 ft begins to rise at about the same time as the probe data, measured at 11.5 ft. These
discrepancies suggest that inaccuracies in the measurements may be as significant as with the
computations.
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Optimal Depth Study

Despite the relatively poor agreement between the computations, microwave data, and probe
data, an optimality study, based on the computations, is presented. The validity of this study is based
on the agreement in the measured plume heights and the qualitative agreement between the video
frames and the computed density contours. The use of microwave and probe measurements has not
been validated for plume density measurements independently. Therefore, even though the
computations may (or may not) disagree with the actual plume water content at any individual
charge depth, the dependence of the plume density on the charge depth may still be accurately
predicted.

 The computations were performed with initial charge depths between 1 and 21 ft. In particular
runs were made at depths, dÊ=Ê1, 1.5,...,4.5, 5.0, 5.2,...,9.8, 10.0, 11.0,...,15.0, 17.0, 19.0, and 21.0.
The initial conditions used were the same as those based on the empirical laws described previously,
modeling a line charge of MÊ=Ê1.25 lbs/ft of C-4. Distances (including charge depths) may be
nondimensionalized using the free-field maximum bubble radius. However, the effects of gravity do
not scale, so the ÒnondimensionalizedÓ results presented here can only be expected to be valid for
charges producing bubble energies within an order of magnitude of these C-4 charges. Initially, the
computations used an indented free surface with the radius of the indentation given by RIÊ=Ê1.03d,

whenever the scaled depth is less than one, that is, 
    
C

d

A D
= ≤

max
( )2

1. As with the computations for Shot

7 and Shot 11, the runs were started on a grid that had a uniform fine grid region of cells with size

    h1 0 05= . , surrounding the initial charge location. In all cases, the uniform region in the horizontal
direction was restricted to the vertical strip,     0 2≤ ≤x . The uniform region in the vertical direction
depended on the initial charge depth, as indicated in Table 3. In the cases when the top of the
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uniform region was below     z = 1, cells of height     2 1h  were added to extend the computational domain
to     z = 1. As before, these initial grids were used for     0 0 007≤ ≤ =t ti . , after which the solution was
remapped onto the second grid. The uniform grid region for the second grid had cell size     h2 0 4= . ,
corresponding to the ÒcoarseÓ grid used previously. The uniform grid region used for the second grid
was the vertical strip     0 12≤ ≤x  intersected with the horizontal strip indicated in Table 3.

Table 3 Ñ Uniform Grid Regions for Depth Dependence Runs

Depth Range Initial Grid Second Grid

    d < 5     − ≤ ≤7 1z     − ≤ ≤21 29z
    5 10≤ ≤d     − ≤ ≤ −12 3z     − ≤ ≤21 29z
    11 15≤ ≤d     − ≤ ≤ −17 9z     − ≤ ≤25 29z

    d > 15     − − ≤ ≤ − +d z d2 2     − − ≤ ≤d z12 29

In this study the expression ÒoptimalÓ will refer to some functional F of the equivalent water
length W as a function of the depth, d. Ideally, we seek dopt, which satisfies

      
F F( ( , , , , )) max ( ( , , , , ))W t H R L d W t H R L dopt

d
= . (36)

Two specific forms for F will be used. The first is simply the time integral of W, namely,

    
f d T F W t H R d T W t H R d dtD D D D

T

1 1 0
( , ) ( ( , , , , ), ) ( , , , , )≡ ∞ = ∞∫ , (37)

which has units of mass-time. The second functional measures the length of time that W is greater
than or equal to some threshold. More precisely,

    f d E T F W t H R d E T m t W t H R d E t TW D D W D D W2 2 0( , , ) ( ( , , , , ), , ) ({ : ( , , , , ) } { })≡ ∞ = ∞ ≥ ∩ ≤ ≤ , (38)

where m  refers to the Lebesgue measure (length) of the set. The threshold value EW may relate t o
some predetermined value for which the plume makes an effective barrier.

Three choices for the pair (H, R) are (12.5, 0.5), (16.5, 5.5), and (25.0, 0.5). These will be
referred to as low, average, and high, respectively. The ÒlowÓ and ÒhighÓ choices correspond to what
would be encountered by a one-foot diameter missile at heights of 12.5 and 25 ft, respectively. The
ÒaverageÓ represents a weighted average between heights 11 and 22 ft. This roughly corresponds t o
the scaled heights between 1 and 2 Amax.

A graph of the function f1(d,T) for the three choices of (H, R), is shown in Fig. 14 below, with
TÊ=Ê6.0 (the entire plume duration). Due to the oscillations in the computed data, an approximation
of dopt cannot be confidently determined. However, some of the features of these graphs become
clearer after the data has been smoothed. The smoothing of the data was performed using

    g A gs = 10( ) , where     A g g g gi i i i( ) ( ) /= + +− +1 14 6  and g is the vector of values of f1(d,T) interpolated (if
necessary) to the uniform grid     d ii = +1 0 2.  for iÊ=Ê0,...,100. The values at the endpoints     i = 0 and

    i = 100  are held fixed by the smoothing.
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A phenomenological argument explaining all of the relative extrema shown in the data cannot be
made at this time. However, the three clear relative maxima, appearing in the ÒaverageÓ case, can be
partially explained by a careful examination of the computed results. At shallow depths, CÊ<Ê0.5
(dÊ<Ê6), the bubble can be expected to vent before its first period (time of minimum volume). For
very shallow depths (dÊ<Ê2.0), the venting occurs early and the amount of water ejected upward is
almost exactly proportional to amount initially above the bubble (charge). As the depth increases,
the time of venting also increases. Eventually, venting will not occur until after the bubble attains a
pressure below the ambient pressure. During this time, the water above the bubble is accelerated
downward, thereby decreasing the amount ejected upwards. This explains the first relative maximum
at d = 2.5 (CÊ=Ê0.21). When venting is delayed until after the first bubble maximum volume, the
velocities of the surrounding water point toward the bubbleÕs center causing it to contract. A high
pressure region forms above the bubble due to the water rushing inward in the relatively thin layer
between the bubble and the air. This causes the formation of the central plume ((cf., Figs. 7 and 8)
tÊ=Ê0.4 and 0.5). Due to the relatively thin layer of water above the bubble at this time and Rayleigh-
Taylor instability, some ÒfingeringÓ of the free surface can pierce the bubble causing some venting t o
occur. The amount of water in the plume depends on how late venting occurs. At depths dÊ>Ê6.0
(CÊ>Ê0.5), the bubble no longer vents during its first pulse. As the depth increases, the central plume
thickens but attains lower maximum heights. The second relative maxima in f1 for the ÒaverageÓ
choice occurs at approximately dÊ=Ê7.6, (CÊ=Ê0.66). Adding to the total water ejected are the
secondary plumes that appear during the bubbleÕs second expansion (cf., Figs. 7 and 8, tÊ=Ê0.8). While
the total amount of water in the central plume appears to diminish after dÊ>Ê8.0, the amounts ejected
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by the secondary and tertiary pulses increase, and the global maximum appears at dÊ=Ê14.0, (CÊ=Ê1.3)
for the ÒaverageÓ choice. At the ÒlowÓ height, the global maximum occurs at dÊ=Ê15 and, at the
ÒhighÓ height, it occurs at the shallower depth of dÊ=Ê13. This can be explained by tertiary plumes
contributing more water and rising to maximum heights between 12.5 and 22 ft.

The theory described above is also supported by the graph of the smoothed second functional f2

defined by Eq. (38). Figures 15 and 16 display graphs of     f d2 1 5 6 0( , . , . )and     f d2 1 5 2 0( , . , . ), respectively.
The similarity in these two sets of graphs for dÊ<Ê10 demonstrates that for these depths most of the
water appears in the plumes for the first 2 s after the detonation. However, for dÊ>Ê12, a substantial
amount of water is ejected upward after 2 s. This corresponds to times after several bubble pulses
have occurred. The relative maximum at dÊ=Ê18.8 at the ÒlowÓ height for     f d2 1 5 6 0( , . , . ) is almost
twice its corresponding value for     f d2 1 5 2 0( , . , . ). This indicates that, for depths near dÊ=Ê19, a plume
rising just above 12.5 ft is ejected upward shortly before tÊ=Ê2 and contains a substantial amount of
water.
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Validations of the Three-Dimensional Model

The BUB3D code was used to model the effects of using discrete charges as opposed to the
continuous line charge approximated with the 2-D model. The goal of this computational
experiment was to predict the difference in the plume structure observed between the use of discrete
or continuous line charges. This difference is conjectured to be caused from shock interactions at the
free surface between the discrete charges shortly after a (nearly) simultaneous detonation. The
incompressible liquid model was initialized using the empirical shock model depicted in Fig. 1. In

particular, the choices RIÊ=Ê1.03d and     R d SF = +1 1 22 2. ( / )  were used to initialize the density.

The assumption that the line charge is of infinite extent was retained from the 2-D model, so
that only one variable (initial charge shape) was changed. This approximation was implemented,
using an extra symmetry plane, centered between two discrete charges. A second symmetry plane,
parallel to the first and cutting through the center of the initial charge location, was also used.
Finally, the model includes a third symmetry plane, containing the line of charges. This third plane
corresponds to the symmetry plane used in the two dimensional computations. If an initial charge is
located at coordinates (x, y, z)Ê=Ê(0, 0, -d) and the initial standoff distance between the charges is S,
then the three symmetry planes described above are located at yÊ=ÊS/2, yÊ=Ê0, and xÊ=Ê0, respectively.

Using the conditions for Shots 2, 6, and 9, namely, dÊ=Ê8.2, WÊ=Ê10 lbs of Composition C-4, it
follows from Eqs. (18-23) that     Amin .= 0 61617,     Amax .= 9 3, and     p PB

0 1535 7= ∞. . (Note, this is the same
initial pressure as for the 2-D model for Shot 7.) As with the 2-D model, a two-grid solution
procedure was used. The initial grid contained a fine uniform region of cell ÒcubesÓ of size     h1 0 1= .  in
the region     0 2≤ ≤x , intersected with     0 4≤ ≤y  and     − ≤ ≤ −10 2 6 2. .z . Above this region the cells were
stretched vertically to a maximum size of     hz = 0 2. , using 46 cells, extending the domain to zÊ=Ê2.0.
The grid was stretched downward to zÊ=Ê−50, using an additional 12 cells. In the x-direction, cells were
stretched to xÊ=Ê50, using an additional 10 cells. Overall, the initial grid was comprised of
30Ê×Ê40Ê×Ê98 cells.

The second grid had a resolution corresponding to the ÒcoarseÓ grids used in the 2-D study. The
uniform region was composed of cubic cells of size     h2 0 4= .  in the region     0 12≤ ≤x  intersected with

    0 4≤ ≤y  and     − ≤ ≤20 30z . Additional stretched cells extended the domain down to     z = −100, up t o
    z = 150, and across to     x = 100 . The second grid used a total of 50Ê×Ê10Ê×Ê185 cells.

Figure 17 shows a composite of video images from Shot 6 and the 3-D computations. The view
displayed in these images is the ÒfrontÓ view, perpendicular to the line of charges and the images
shown in Figs. 7 and 8. Density plots from the computations overlay the video images in the range

    0 28≤ ≤y . These plots were created by reflecting and copying plots from the actual computational
region (    0 4≤ ≤y ) by symmetry.

The video image at time tÊ=Ê0 corresponds to a time shortly after the charge detonations. The
density plot overlaying this image corresponds to the computation at tÊ=Ê0.0035, the initial time for
the remapped solution on the second grid. At this time the bubbles are still discrete and nearly
spherical. The indentations at zÊ=Ê0 for the empirical model of the shock interactions can be
observed. The shock interactions may be clearly observed as white ÒbumpsÓ above the line of charges
at the midpoints between the charges. Curved white lines emanating from these points on either side
of the charge line are also observable in this image. The curve in these lines is due to slightly
asynchronous detonation (from right to left) of the charges. At tÊ=Ê0.1, seven distinct Òfinger
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plumesÓ can be seen rising to a height of about 20 ft, compared to 15 ft in the computations. The
computed shorter plumes directly above the initial charge locations arise from the initial indentation
of radius Ri. In the video it is difficult to see this detail in the plume structure. The computed bubble is
now cylindrical shaped separated by a thin membrane at the symmetry wall. The bubble expands
attaining a maximum volume at tÊ=Ê0.266, and the contraction can be clearly observed at tÊ=Ê0.4. The
bubble continues its collapse until shortly after tÊ=Ê0.5. The height of the plume fingers is under
predicted by the computations for tÊ<Ê0.3 and slightly over predicted for tÊ>Ê0.3. At the later times,
the plume velocity can be expected to be influenced by air resistance. Air resistance is not modeled in
the computations. This is a likely cause of the over production of the plume heights for tÊ>Ê0.3.
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Fig. 17 Ñ Composite of video images and computed density plots for Shot 6

A comparison of the measured and computed plume heights is shown in Fig. 18. Also included
were measured plume heights from Shots 2 and 9 (same depth and standoff as Shot 6 but using only 5
charges). The plume heights from Shots 2 and 9 are slightly lower than for Shot 6, and they are in
better agreement with the computation for tÊ<Ê0.3 and in worse agreement for tÊ>Ê0.3.

Figure 19 displays perspective images of the 3-D computation. In these frames, two isocontours
of density are displayed. For the plume above zÊ=Ê0, the isosurface   ρ ρ= 0 001 0.  is rendered in light
gray, while for the bubble below zÊ=Ê0 the isosurface   ρ ρ= 0 5 0.  is rendered in dark gray. At tÊ=Ê0.2, the
bubble is clearly seen to be cylindrical in shape. A 2-D jet can be seen piercing the top of the
cylindrical bubble at the start of the collapse phase at tÊ=Ê0.4. The ejection of the secondary plumes
can be seen at times tÊ=Ê1.0 and tÊ=Ê1.2. These secondary plumes appear later in this calculation than
in the analogous 2-D computation (cf., Fig. 7) due to the bubble venting into the air region during its
collapse. When the bubble reformed it continued to collapse but had less energy for the second
expansion.



30 Szymczak and Higdon

0

10

20

30

40

50

60

70

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

H
ei

gh
t 

(f
t)

Shot 6
Shot 2
Shot 9
Computed

Fig. 18 Ñ Computed and measured plume heights for discrete charge shots

t=0.2 t=1.2t=1.0t=0.4

Fig. 19 Ñ Computed bubble and plume isocontours for Shot 6



Model Validations and Predictions 31

SUMMARY AND CONCLUSIONS

This report presented comparisons between computational and experimental measurements of
plumes produced by underwater explosions. Of particular interest was the study of charge
configurations, which create a plume ÒbarrierÓ by ejecting a Òwall of waterÓ above the surface. Such
an effect occurs after either the nearly simultaneous detonation of discrete charges placed sufficiently
close together in a line, or the detonation of a continuous line of charges.

The overall hydrodynamic phenomena involved in this process is extremely complicated. The
bubble formed from underwater detonation can undergo several cycles or periods before it vents.
During each cycle, hydrodynamic instabilities can be expected at both the bubble-water and air-water
interfaces. Rayleigh-Taylor instabilities occur whenever a denser material (water) is accelerated into a
less dense material (bubble gas, or air). These instabilities occur at the bubble interface when the
bubble is near its minimum volume and the bubble pressure is above the ambient hydrostatic pressure.
They also occur at the air-water interface as the bubble begins its contraction. Such instabilities make
pointwise density comparisons meaningless. Combined with the long-time behavior of the overall
dynamics, the numerical accuracy of the computations is also an issue. Nevertheless, the overall
dynamics of the plume formation and secondary plume ejection is reproducible experimentally, and
as was demonstrated in this paper, computationally as well.

Numerical accuracy of the computations was studied by comparing the predicted dynamics using
two different grids (fine and coarse), with sizes differing by a factor of two. For relatively early times
(tÊ<Ê1.0) the differences in the solutions were very small (cf., Fig. 2) but became more apparent at
later times. These differences were also studied quantitatively by comparing computed plume heights
(cf., Figs. 3 and 4). Comparisons were made with and without an indented free surface used t o
empirically model the shock effects.

The use of an empirical model (cf., Fig. 1) for shock effects at the air-water surface was found t o
be critical for accurate predictions of the plume heights. For continuous line charges, the model
accounts for the reflection of the cylindrical shock off the air-water interface by initializing the
interface with a small channel in the water directly above the line charge. When this model was used,
the predicted plume heights were initially lower than those observed (for tÊ<Ê0.3) probably due t o
water spalled upward from the shock reflection unaccounted for in the model. At later times the
computed plume heights eventually exceed the observed heights (cf., Figs. 5 and 6). This over
prediction is conjectured to be caused by the lack of air resistance in the computational model.

By also including the effects of shock interaction between discrete charges, the plume heights for
a discrete line charge case accurately matched the observed heights using a 3-D computational model
(see Fig. 18). In the discrete charge case, the plume heights are generally higher than with an
equivalent line charge due to the ÒfingeringÓ of the plumes between the charge locations. This
fingering effect was reproduced by the 3-D computation using the empirical shock model (see
Fig.Ê17).

Secondary plumes are ejected (for scaled charge depths CÊ>Ê0.5) for line charges and single
discrete charges. For discrete charges, secondary (radial) plumes were first accurately predicted in
Ref.Ê2. For continuous line charges, the emergence of secondary plumes has been observed and
accurately predicted in this study (see Figs. 7 and 8). These secondary plumes were also predicted
using the 3-D model (see Fig. 19). This computation also demonstrated the cylindrical shape of the
merged bubbles during their first expansion.
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Comparisons of computed and measured plume densities were unfortunately less successful. The
computations predicted significantly less density in the plume than the amounts determined using the
microwave absorption measurements (see Figs. 9 and 10). However, the computations predicted
either more (see Fig. 12) or roughly the same (see Fig. 11) total amount of water in the plume as
determined by the conductivity probe measurements. The disagreement of the measured results, due
to the measurement techniques and the lack of calibration, undermines their use as a validation tool
for the computations.

The optimal depth study was complicated by the relative unsmoothness of the results as a
function of depth (cf., Fig. 14). Even when the results were regularized, several relative maxima
appeared. Furthermore, the results were dependent on both the measure used and the height at which
the densities were integrated. For the range of depths studied (0.1Ê<ÊCÊ<Ê2.2), three relative maxima
appeared consistently for all the cases considered. Conjectures were made to explain these relative
maxima but were not verified by either additional computational or experimental tests.

Improvements in the predictive model can be made in several ways. One improvement would be
to eliminate the empirical conditions used for the initial conditions, using a validated code which
includes compressible effects for the water region. The compressible code would need to be run for
only a relatively short duration until the shock and reflected rarefaction wave are sufficiently far
from the initial charge location. After this time, the results of the compressible code could be used as
initial data for the currently used BUB2D or BUB3D codes. Another relatively straightforward
improvement would be the inclusion of a model for the ÒairÓ. In the current model, the air is simply
a void with uniform density. Treating the air as a second incompressible species, with a prescribed
density, may yield more accurate late-time plume feature predictions.
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